Changes between Version 12 and Version 13 of libpipi/research/filters
- Timestamp:
- 10/22/2008 03:23:35 PM (16 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
libpipi/research/filters
v12 v13 5 5 The usual way to create a Gaussian kernel is to evaluate a Gaussian function at the center of each cell: 6 6 7 k[i][j] = exp(-(i²+j²)/2σ) 7 {{{ 8 #!latex 9 $k_{i,j} = e^{-\dfrac{i^2+j^2}{2\sigma}}$ 10 }}} 8 11 9 12 This usually works well, except when the kernel is thin (σ < 1). It gets worse when using our generalised kernel: 10 13 11 k[i][j] = exp(-((i×cosθ-j×sinθ-dx)²+(j×cosθ+i×sinθ-dy)²)/2σ) 14 {{{ 15 #!latex 16 $k_{i,j} = e^{-\dfrac{(i\cos\theta-j\sin\theta-dx)^2+(j\cos\theta+i\sin\theta-dy)^2}{2\sigma}}$ 17 }}} 12 18 13 19 {{{