Changes between Version 1 and Version 2 of libpipi/sandbox
- Timestamp:
- 10/22/2008 12:57:42 PM (16 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
libpipi/sandbox
v1 v2 1 == Numbering tiles == 2 3 If we want a straightforward way to linearly index tiles without necessarily knowing the image size, we can use the following enumeration: 4 5 || 0 || 1 || 3 || 6 || 10 || 15 || 21 || 6 || 2 || 4 || 7 || 11 || 16 || 22 || 29 || 7 || 5 || 8 || 12 || 17 || 23 || 30 || 38 || 8 || 9 || 13 || 18 || 24 || 31 || 39 || … || 9 || 14 || 19 || 25 || 32 || 40 || … || || 10 || 20 || 26 || 33 || 41 || … || || || 11 || 27 || 34 || 42 || … || || || || 12 13 One way to generate these values is using the '''Cantor polynomial''': 1 14 {{{ 2 15 #!latex 3 $ \mbox{Var}[\tau(X_p,X_d)] = \mbox{Var}[E(\tau(X_p,X_d)|X_p)] E[\mbox{Var}(\tau(X_p,X_d)|X_p)]$16 $n = \dfrac{(x + y) (x + y + 1)}{2} + y$ 4 17 }}} 18 19 Efficiently inverting that polynomial is not trivial. Here is one way to do it: 20 {{{ 21 #!latex 22 $k = E(\dfrac{\sqrt{8n+1}-1}{2})$ 23 24 $y = n - \dfrac{k (k + 1)}{2}$ 25 26 $x = k - y$ 27 }}}