== Numbering tiles == If we want a straightforward way to linearly index tiles without necessarily knowing the image size, we can use the following enumeration: || 0 || 1 || 3 || 6 || 10 || 15 || 21 || || 2 || 4 || 7 || 11 || 16 || 22 || 29 || || 5 || 8 || 12 || 17 || 23 || 30 || 38 || || 9 || 13 || 18 || 24 || 31 || 39 || … || || 14 || 19 || 25 || 32 || 40 || … || || || 20 || 26 || 33 || 41 || … || || || || 27 || 34 || 42 || … || || || || One way to generate these values is using the '''Cantor polynomial''': {{{ #!latex $n = \dfrac{(x + y) (x + y + 1)}{2} + y$ }}} Efficiently inverting that polynomial is not trivial. Here is one way to do it: {{{ #!latex $k = E(\dfrac{\sqrt{8n+1}-1}{2})$ $y = n - \dfrac{k (k + 1)}{2}$ $x = k - y$ }}} The following C code works OK for values up to 10,000 (higher values may cause overflows), which potentially allows for procedural terapixel images. {{{ #!c for(int y = 0; y < 10000; y++) for(int x = 0; x < 10000; x++) { int n = (x + y) * (x + y + 1) / 2 + y; int k = (sqrt((double)(n * 8 + 1)) - 1) / 2; int y2 = n - k * (k + 1) / 2; int x2 = k - y2; if(x != x2 || y != y2) printf("ERROR! %i %i -> %i -> %i %i\n", x, y, n, x2, y2); } }}}