Reinstating Floyd-Steinberg: Improved Metrics for Quality Assessment of Error Diffusion Algorithms

Sam Hocevar, Gary Niger

ICISP’08 – Cherbourg-Octeville, France
Introduction

- Halftoning is the process of converting a continuous tone image into another image with a reduced number of tones.
Ordered dithering

- Tiles a dither matrix (e.g. Bayer, void-and-cluster) for use as threshold values.
- Average quality, fast, parallelisable.
Error diffusion

- Uses feedback through an error diffusion matrix (eg. Floyd-Steinberg, Stucki, JaJuNi...).
- Good quality, hardly parallelisable.
Direct binary search

- Uses a human visual system model to simulate eye behaviour and minimise a global distance.
- Excellent quality, yet very slow (iterative).
What is “quality”?

- One possible metric:

\[E(h, b) = \frac{(||v * h_{i,j} - v * b_{i,j}||_2)^2}{wh} \]

- \(h \): original image
- \(b \): dithered image
- \(v \): human visual system filter

- Smaller error = higher quality
The human visual system model
Relative quality of algorithms

- Using *lena.tga* and a Gaussian HVS:
 - 8×8 Bayer dithering: $E = 0.06352$
 - Floyd-Steinberg dithering: $E = 0.01847$
 - Direct binary search: $E = 0.00984$

- Other images show a similar trend
Image displacement

- Floyd-Steinberg kernel:
 \[
 \frac{1}{16} \quad \begin{array}{ccc}
 - & x & 7 \\
 3 & 5 & 1
 \end{array}
 \]

- Error is propagated to the right and bottom, which shows in the image:
Image displacement

- Slight formula modification:

\[
E_{dx,dy}(h, b) = \frac{(\|v \ast h_{i,j} - v \ast t_{dx,dy} \ast b_{i,j}\|_2)^2}{wh}
\]

- \(t_{dx,dy} \) translates the image by \((dx,dy)\)

- For most error-diffused images, \(E_{dx,dy} \) has a local minimum \(E_{min} \) which is not \((0,0)\)

- \(E_{min} \) is our new quality metric
$E_{dx,dy}$ variations for *lena.tga*

- F-S displacement for *lena.tga* is (0.28, 0.22):
(dx,dy)_{min} variations

- Histogram on a sample of 10,000 images:

- Floyd-Steinberg displacement is (0.16, 0.28)

- We introduce $E_{\text{fast}} = E_{0.16, 0.28}$ which is statistically a better metric than E.
Displacement for other algorithms

- Jarvis-Judice-Ninke: (0.26, 0.76)
- Ostromoukhov: (0.0, 0.19)
- Serpentine optimum: (0.0, 0.34)
Application: improving Floyd-Steinberg

- The idea: find the best Floyd-Steinberg-like diffusion kernel by computing E_{min} for many sample images and diffusion kernels.
- We use CPUShare (www.cpushare.com) for cheap and secure distributed computing.
Results

• Result #1: best kernel is \{6, 3, 5, 2\}, original
 Floyd-Steinberg \{7, 3, 5, 1\} is 2nd best

• Result #2: using E instead of E_{min} elects poor kernels such as \{7, 3, 6, 0\}

• Result #3: \{7, 4, 5, 0\} is a much better kernel for serpentine scan than the original Floyd-Steinberg
Future work

- Find a link between \((dx, dy)_{min}\) and the ED kernel
- Optimise other widely-used ED kernels
- Experiment with more complex HVS models