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Abstract. In this contribution we introduce a little-known property of
error diffusion halftoning algorithms which we call error diffusion dis-

placement. By accounting for the inherent sub-pixel displacement caused
by the error propagation, we correct an important flaw in most metrics
used to assess the quality of resulting halftones. We find these metrics to
usually highly underestimate the quality of error diffusion in comparison
to more modern algorithms such as direct binary search. Using empiri-
cal observation, we give a method for creating computationally efficient,
image-independent, model-based metrics for this quality assessment. Fi-
nally, we use the properties of error diffusion displacement to justify
Floyd and Steinberg’s well-known choice of algorithm coefficients.
Keywords: halftoning, error diffusion, image quality, human visual sys-
tem, color quantization

1 Introduction

Image dithering is the process of reducing continuous-tone images to images with
a limited number of available colours. Applications vary tremendously, from laser
and ink-jet printing to display on small devices such as cellphones, or even the
design of banknotes.

Countless methods have been published for the last 40 years that try to best
address the problem of colour reduction. Comparing two algorithms in terms of
speed or memory usage is often straightforward, but how exactly a halftoning
algorithm performs quality-wise is a far more complex issue, as it highly depends
on the display device and the inner workings of the human eye.

Though this document focuses on the particular case of bilevel halftoning,
most of our results can be directly adapted to the more generic problem of colour
reduction.

2 Halftoning algorithms

The most ancient halftoning method is probably classical screening. This highly
parallelisible algorithm consists in tiling a dither matrix over the image and



using its elements as threshold values. Classical screening is known for its struc-
tural artifacts such as the cross-hatch patterns caused by Bayer ordered dither
matrices [1]. However, modern techniques such as the void-and-cluster method
[2], [3] allow to generate screens yielding visually pleasing results.

Error diffusion dithering, introduced in 1976 by Floyd and Steinberg [4], tries
to compensate for the thresholding error through the use of feedback. Typically
applied in raster scan order, it uses an error diffusion matrix such as the following
one, where x denotes the pixel being processed:
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Though efforts have been made to make error diffusion parallelisable [5],
it is generally considered more computationally expensive than screening, but
carefully chosen coefficients yield good visual results [6].

Model-based halftoning is the third important algorithm category. It relies on
a model of the human visual system (HVS) and attempts to minimise an error
value based on that model. One such algorithm is direct binary seach (DBS)
[10], also referred to as least-squares model-based halftoning (LSMB) [16].

HVS models are usually low-pass filters. Nasanen [9], Analoui and Allebach
found that using Gaussian models gave visually pleasing results, an observation
confirmed by independent visual perception studies [11].

DBS yields halftones of impressive quality. However, despite efforts to make
it more efficient [12], it suffers from its large computational requirements and
error diffusion remains a more widely used technique.

3 Error diffusion displacement

Most error diffusion implementations parse the image in raster scan order. Bous-
trophedonic (serpentine) scanning has been shown to cause fewer visual artifacts
[7], but other, more complex processing paths such as Hilbert curves [8] are sel-
dom used as they do not improve the image quality significantly.

Intuitively, as the error is always propagated to the bottom-left or bottom-
right of each pixel (Fig. 1), one may expect the resulting image to be slightly
translated. This expectation is confirmed visually when rapidly switching be-
tween an error diffused image and the corresponding DBS halftone.

This small translation is visually innocuous but we found that it means a lot
in terms of error computation. A common way to compute the error between an
image hi,j and the corresponding binary halftone bi,j is to compute the mean
square error between modified versions of the images, in the form:

E(h, b) =
(||v ∗ hi,j − v ∗ bi,j ||2)

2

wh
(1)

where w and h are the image dimensions, ∗ denotes the convolution and v is a
model for the human visual system.



Fig. 1. Floyd-Steinberg error diffusion direction in raster scan (left) and serpentine
scan (right).

To compensate for the slight translation observed in the halftone, we use the
following error metric instead:

Edx,dy(h, b) =
(||v ∗ hi,j − v ∗ tdx,dy ∗ bi,j ||2)

2

wh
(2)

where tdx,dy is an operator which translates the image along the (dx, dy) vector.
By design, E0,0 = E.

A simple example can be given using a Gaussian HVS model:

v(x, y) = e
x2+y2

2σ2 (3)

Finding the second filter is then straightforward:

(v ∗ tdx,dy)(x, y) = e
(x−dx)2+(y−dy)2

2σ2 (4)

Experiments show that for a given image and a given corresponding halftone,
Edx,dy has a local minimum almost always away from (dx, dy) = (0, 0) (Fig. 2).
Let E be an error metric where this remains true. We call the local minimum
Emin:

Emin(h, b) = min
dx,dy

Edx,dy(h, b) (5)

For instance, a Floyd-Steinberg dither of Lena with σ = 1.2 yields a per-pixel
mean square error of 3.67 × 10−4. However, when taking the displacement into
account, the error becomes 3.06 × 10−4 for (dx, dy) = (0.165, 0.293). The new,
corrected error is significantly smaller, with the exact same input and output
images.

Experiments show that the corrected error is always noticeably smaller ex-
cept in the case of images that are already mostly pure black and white. The
experiment was performed on a database of 10,000 images from common com-
puter vision sets and from the image board 4chan, providing a representative
sampling of the photographs, digital art and business graphics widely exchanged
on the Internet nowadays [13].

In addition to the classical Floyd-Steinberg and Jarvis-Judice-Ninke kernels,
we tested two serpentine error diffusion algorithms: Ostromoukhov’s simple error
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Fig. 2. Mean square error for the Lena image (×104). v is a simple 11 × 11 Gaussian
convolution kernel with σ = 1.2 and (dx, dy) vary in [−1, 1] × [−1, 1].

diffusion [15], which uses a variable coefficient kernel, and Wong and Allebach’s
optimum error diffusion kernel [14]:

E × 104 Emin × 104

raster Floyd-Steinberg 3.7902 3.1914
raster Ja-Ju-Ni 9.7013 6.6349
Ostromoukhov 4.6892 4.4783
optimum kernel 7.5209 6.5772

We clearly see that usual metrics underestimate the quality of error-diffused
halftones, especially in raster scan. Algorithms such as direct binary search, on
the other hand, do not suffer from this bias since they are designed to minimise
the very error induced by the HVS model.

4 An image-independent corrected quality metric for

error-diffused halftones

We have seen that for a given image, Emin(h, b) is a better and fairer visual
error measurement than E(h, b). However, its major drawback is that it is highly
computationally expensive: for each image, the new (dx, dy) values need to be
calculated to minimise the error value.

Fortunately, we found that for a given raster or serpentine scan error diffusion
algorithm, there was often very little variation in the optimal (dx, dy) values (Fig.
3 and 4).

For each algorithm, we choose the (dx, dy) values at the histogram peak and
we refer to them as the algorithm’s displacement, as opposed to the image’s

displacement for a given algorithm. We call Efast(h, b) the error computed at
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Fig. 3. error diffusion displacement histograms for the raster Floyd-Steinberg (left)
and raster Jarvis, Judis and Ninke (right) algorithms applied to a corpus of 10,000
images
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Fig. 4. error diffusion displacement histograms for the Ostromoukhov (left) and opti-
mum kernel (right) algorithms applied to a corpus of 10,000 images



(dx, dy). As Efast does not depend on the image, it is a lot faster to compute
than Emin, and as it is statistically closer to Emin, we can expect it to be a
better error estimation than E:

E × 104 Emin × 104 dx dy Efast × 104

raster Floyd-Steinberg 3.7902 3.1914 0.16 0.28 3.3447
raster Ja-Ju-Ni 9.7013 6.6349 0.26 0.76 7.5891
Ostromoukhov 4.6892 4.4783 0.00 0.19 4.6117
optimum kernel 7.5209 6.5772 0.00 0.34 6.8233

5 Using error diffusion displacement for optimum kernel

design

We believe that our higher quality Emin error metric may be useful in kernel
design, because it is the very same error that admittedly superior yet computa-
tionally expensive algorithms such as DBS try to minimise.

Our first experiment was a study of the Floyd-Steinberg-like 4-block error
diffusion kernels. According to the original authors, the coefficients were found
”mostly by trial and error” [4]. With our improved metric, we now have the tools
to confirm or infirm Floyd and Steinberg’s initial choice.

We chose to do an exhaustive study of every 1

16
{a, b, c, d} integer combina-

tion. We deliberately chose positive integers whose sum was 16: error diffusion
coefficients smaller than zero or adding up to more than 1 are known to be un-
stable [17], and diffusing less than 100% of the error causes important loss of
detail in the shadow and highlight areas of the image.

We studied all possible coefficients on a pool of 3,000 images with an error
metric E based on a standard Gaussian HVS model. Emin is only given here as
an indication and only E was used to elect the best coefficients:

rank coefficients E × 104 Emin × 104

1 7 3 6 0 4.65512 3.94217
2 8 3 5 0 4.65834 4.03699

5 7 3 5 1 4.68588 3.79556

18 6 3 5 2 4.91020 3.70465
. . . . . . . . . . . .

The exact same operation using Emin as the decision variable yields very
different results. Similarly, E is only given here as an indication:

rank coefficients Emin × 104 E × 104

1 6 3 5 2 3.70465 4.91020
2 7 3 5 1 3.79556 4.68588

15 7 3 6 0 3.94217 4.65512

22 8 3 5 0 4.03699 4.65834
. . . . . . . . . . . .



Our improved metric allowed us to confirm that the original Floyd-Steinberg
coefficients were indeed amongst the best possible for raster scan. More im-
portantly, using E as the decision variable may have elected 1

16
{7, 3, 6, 0} or

1

16
{8, 3, 5, 0}, which are in fact poor choices.
For serpentine scan, however, our experiment suggests that 1

16
{7, 4, 5, 0} is a

better choice than the Floyd-Steinberg coefficients that have nonetheless been
widely in use so far (Fig. 5).

Fig. 5. halftone of Lena using serpentine error diffusion (left) and the optimum coeffi-
cients 1

16
{7, 4, 5, 0} (right) that improve on the standard Floyd-Steinberg coefficients in

terms of visual quality for the HVS model used in section 3. The detailed area (bottom)
shows fewer structure artifacts in the regions with low contrast.

6 Conclusion

We have disclosed an interesting property of error diffusion algorithms allowing
to more precisely measure the quality of such halftoning methods. Having showed



that such quality is often underestimated by usual metrics, we hope to see even
more development in simple error diffusion methods.

Confirming Floyd and Steinberg’s 30-year old ”trial-and-error” result with
our work is only the beginning: future work may cover more complex HVS mod-
els, for instance by taking into account the angular dependance of the human
eye [18]. We plan to use our new metric to improve all error diffusion methods
that may require fine-tuning of their propagation coefficients.
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