# source:libcaca/trunk/cucul/math.c@683Tweet

Last change on this file since 683 was 683, checked in by Sam Hocevar, 15 years ago
• Removed spurious prototype.
• Property svn:keywords set to `Id`
File size: 1.8 KB
Line
1/*
2 *  libcucul      Canvas for ultrafast compositing of Unicode letters
3 *  Copyright (c) 2002-2006 Sam Hocevar <sam@zoy.org>
5 *
6 *  This library is free software; you can redistribute it and/or
7 *  modify it under the terms of the Do What The Fuck You Want To
8 *  Public License, Version 2, as published by Sam Hocevar. See
9 *  http://sam.zoy.org/wtfpl/COPYING for more details.
10 */
11
12/** \file math.c
13 *  \version \\$Id: math.c 683 2006-03-24 09:30:02Z sam \$
14 *  \author Sam Hocevar <sam@zoy.org>
15 *  \brief Math
16 *
17 *  This file contains simple mathematical routines.
18 */
19
20#include "config.h"
21
22#if !defined(__KERNEL__)
23#   include <stdlib.h>
24#endif
25
26#include "cucul.h"
27#include "cucul_internals.h"
28
29/**
30 * \brief Generate a random integer within a range.
31 *
32 * \param min The lower bound of the integer range.
33 * \param max The upper bound of the integer range.
34 * \return A random integer comprised between \p min and \p max, inclusive.
35 */
36int cucul_rand(int min, int max)
37{
38    return min + (int)((1.0*(max-min+1)) * rand() / (RAND_MAX+1.0));
39}
40
41/**
42 * \brief Approximate a square root, using Newton's method to avoid
43 *        costly floating point calculations.
44 *
45 * \param a A positive integer.
46 * \return The approximate square root of \p a.
47 */
48unsigned int cucul_sqrt(unsigned int a)
49{
50    if(a == 0)
51        return 0;
52
53    if(a < 1000000000)
54    {
55        unsigned int x = a < 10 ? 1
56                       : a < 1000 ? 10
57                       : a < 100000 ? 100
58                       : a < 10000000 ? 1000
59                       : 10000;
60
61        /* Newton's method. Three iterations would be more than enough. */
62        x = (x * x + a) / x / 2;
63        x = (x * x + a) / x / 2;
64        x = (x * x + a) / x / 2;
65        x = (x * x + a) / x / 2;
66
67        return x;
68    }
69
70    return 2 * cucul_sqrt(a / 4);
71}
72
Note: See TracBrowser for help on using the repository browser.